Enhanced effect of nuclear localization signal peptide during ultrasound-targeted microbubble destruction-mediated gene transfection
نویسندگان
چکیده
Ultrasound‑targeted microbubble destruction (UTMD) can promote the entry of plasmid DNA (pDNA) into the cell cytoplasm, by increasing the permeability of the cell membrane. But the transfection efficiency remains low due to inability of the pDNA to enter the nucleus. Various methods have been explored to improve the UTMD transfection efficiency, but with little success. In cells, the classic nuclear localization signal (cNLS) peptide is an amino acid sequence that signals proteins that are due for nuclear transport. The present study aimed to investigate whether binding of a cNLS peptide to the pDNA may improve the transfection efficiency of UTMD. Four experimental groups were analyzed: Control group (UTMD + pDNA), group with cNLS (UTMD + pDNA + cNLS), group with mutated NLS (mNLS; UTMD + pDNA + mNLS), and group with cNLS and the nuclear import blocker, wheat germ agglutinin (WGA; UTMD + pDNA + cNLS + WGA). The NLS was labeled by fluorescein isothiocyanate, whereas pDNA was labeled with Cy3. Different molar ratios were tested for the NLS and pDNA combination in order to achieve optimal binding of the two molecules. Human umbilical vein endothelial cells were then transfected using the optimum ultrasonic irradiation parameters and NLS/pDNA molar ratio. At 6 h post‑transfection, the rates of Cy3‑labeled pDNA inside the cells and their nuclei were detected by flow cytometry and laser confocal microscopy, and the cellular vs. nuclear uptake of pDNA was calculated. In order to further evaluate the effect of NLS on UTMD‑mediated gene transfection, the transfection efficiency and relative expression levels of mRNA and protein were detected at 48 h post‑transfection. The results demonstrated that the optimal molar ratio of NLS with pDNA was 104:1. The rates of pDNA successful entry into the cell and nucleus were significantly higher in the cNLS group compared with the control group. The transfection efficiency, and relative expression levels of mRNA and protein from the plasmid were significantly increased in the cNLS group compared with the control group. The mNLS group displayed no significant difference compared with the control group, while the WGA group exhibited significant inhibition in most indicators of transfection efficiency compared to the cNLS group. These results suggest that combining a cNLS peptide with pDNA during UTMD‑mediated transfection significantly improved transfection efficiency. Thus, a cNLS peptide may be an important mediator and a new strategy in enhancing the efficiency of UTMD‑mediated gene transfection.
منابع مشابه
Ultrasound-targeted microbubbles combined with a peptide nucleic acid binding nuclear localization signal mediate transfection of exogenous genes by improving cytoplasmic and nuclear import
The development of an efficient delivery system is critical for the successful treatment of cardiovascular diseases using non‑viral gene therapies. Cytoplasmic and nuclear membrane barriers reduce delivery efficiency by impeding the transfection of foreign genes. Thus, a gene delivery system capable of transporting exogenous genes may improve gene therapy. The present study used a novel strateg...
متن کاملEnhancement of Angiogenesis by Ultrasound-Targeted Microbubble Destruction Combined with Nuclear Localization Signaling Peptides in Canine Myocardial Infarction
Objective This study aimed to develop a gene delivery system using ultrasound-targeted microbubbles destruction (UTMD) combined with nuclear localization signal (NLS) and investigate its efficacy and safety for therapeutic angiogenesis in canine myocardial infarction (MI) model. Methods Fifty MI dogs were randomly divided into 5 groups and transfected with Ang-1 gene plasmid: (i) group A: onl...
متن کاملExperimental endostatin-GFP gene transfection into human retinal vascular endothelial cells using ultrasound-targeted cationic microbubble destruction
PURPOSE The purpose of this study was to investigate whether ultrasound-targeted cationic microbubble destruction could effectively deliver endostatin-green fluorescent protein (ES-GFP) plasmids to human retinal vascular endothelial cells (HRECs). METHODS Cationic microbubbles (CMBs) were prepared and then compared with neutral microbubbles (NMBs) and liposomes. First, the two types of microb...
متن کاملProtein Expression of Mesenchymal Stem Cells after Transfection of pcDNA3.1−-hVEGF165 by Ultrasound-Targeted Microbubble Destruction
Ultrasound-targeted microbubble destruction (UTMD) has been proposed as a new technique for organ-specific gene transfer and drug delivery. This study was performed to investigate the effect of UTMD on marrow mesenchymal stem cells (MSCs) transfected with pcDNA3.1⁻-hVEGF₁₆₅.pcDNA3.1⁻-hVEGF₁₆₅ were transfected into the third passage of MSCs, with or without UTMD under different ultrasound condit...
متن کاملUltrasound combined with targeted cationic microbubble-mediated angiogenesis gene transfection improves ischemic heart function
The present study aimed to construct targeted cationic microbubbles (TCMBs) by synthesizing cationic microbubbles conjugated to an intercellular adhesion molecule-1 (ICAM-1) antibody, and then to use the TCMBs to deliver the angiopoietin-1 (Ang-1) gene into infarcted heart tissue using ultrasound-mediated microbubble destruction. It was hypothesized that the TCMBs would accumulate in higher num...
متن کامل